Abstract

In this study, we report first time about the synthesis and photocatalytic behavior of β-Tin Tungstate–reduced Graphene Oxide (β-SnWO4–rGO) nanocomposites. The β-SnWO4–rGO was prepared by surfactant free microwave method followed by graphene oxide (GO) reduction process. The dye degradation was observed by decrease in absorption spectrum and decolorization in the presence of visible light. The degradation efficiency was found to be dependent on the amount of catalyst added in dye solution because rGO reduces the recombination of the charge carriers resulting in high mobility. The degradation efficiency of 55% and 60% were achieved by β-SnWO4 alone, whereas in the presence of rGO, the photocatalytic degradation efficiency was found to be increased up to 90% and 91% in methylene orange (MO) and rhodamine B (RB) respectively. It reveals the excellent photocatalytic activity of the catalyst (composite) in short time. The crystalline phase of nanocomposite was studied by using X-ray diffraction technique. Further the surface morphology was analyzed by using SEM and HR-TEM. Presence of rGO was confirmed by using Raman spectroscopy. Our results show the potential future in development of futuristic rGO based nanocomposites for photocatalytic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.