Abstract

This research work intends to evaluate the photoactivity of calcium oxide (CaO) nanorods (NRs) doped with cellulose nanocrystals (CNCs) and cerium (Ce). CNC-doped CaO and Ce/CNC codoped CaO were synthesized via the sol–gel technique. Structural, optical, morphological, physiochemical, phase constitution, and functional group evaluations were performed. The photodegradation of the prepared nanostructures was analyzed by observing photodegradation of a mixture of methylene blue and ciprofloxacin dye under light irradiation. The photocatalytic activity of the dye was drastically enhanced upon codoping in CaO. For both Escherichia coli and Staphylococcus aureus, statistically significant inhibitory zones (p < 0.05) were achieved in the case of CNCs and pristine and codoped CaO. Furthermore, in silico molecular docking studies (MDS) were accomplished against DNA gyrase from nucleic acid biosynthesis and enoyl-[acyl-carrier-protein] reductase (FabI) from the fatty acid biosynthetic pathway to rationalize the possible mechanism behind these antibacterial activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.