Abstract

The synthesis of efficient and stable catalysts for photocatalytic reactions is still a challenge. In this study, a new photocatalyst composed of two-dimensional titanium carbide (Ti3C2Tx) and CdS quantum dots (QDs) was fabricated, in which CdS QDs were intimately anchored on the Ti3C2Tx sheet surface. Due to the specific interface characteristics of CdS QDs/Ti3C2Tx, Ti3C2Tx can considerably facilitate the generation of photogenerated charge carriers, their separation, and their transfer from CdS. As expected, the obtained CdS QDs/Ti3C2Tx exhibit outstanding photocatalytic performance for carbamazepine (CBZ) degradation. Moreover, the quenching experiments demonstrated that superoxide radicals (•O2-), H2O2, 1O2, and •OH are the reactive species involved in CBZ degradation, while •O2- made a major contribution. In addition, the sunlight-driven CdS QDs/Ti3C2Tx photocatalytic system is widely suitable for the elimination of different emerging pollutants in various water matrices, suggesting its potential practical environmental applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call