Abstract

a b s t r a c t TiO2 nanobelt membranes with hierarchical structure were successfully synthesized by sequentially autoclaving Ti at 190 ◦ C for 3 d in the presence of 10 M NaOH and 10 M KOH solutions. Microstructural characterization revealed TiO2 nanoparticles joining together and on the surface of nanobelts. These hierarchical structures form a three dimensional porous membrane which significantly enhances both surface specific area and light absorption, resulting in improved chemical adsorption capacity and pho- tocatalytic degradation efficiency relative to nanobelts with smooth surfaces using methylene blue as a model molecule. The adsorption of methylene blue to these structures follows a pseudo-second order kinetics chemisorption mechanism with rate-limited diffusion correlated to pore structure and size. The dominant reactive oxygen species are identified as hydroxyl radicals and valence band holes through the scavenging reaction. The synergistic enhancement of filtration through surface adsorption and pho- tocatalytic degradation is also demonstrated in a prototype photocatalytic membrane reactor with UV excitation at 365 nm. The reuse of nanobelt membranes after annealing shows the excellent recovery of TiO2 catalyst. These studies may contribute to additional applications of hierarchical TiO2 nanobelt membranes, including those harnessing sunlight for water treatment. © 2013 Elsevier B.V. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.