Abstract

This study explores the synthesis, properties, and applications of chitosan-encapsulated silver sulphide (Ag2S) quantum dots (QDs) for biological applications. The investigation focuses on the fluctuations in the physico-chemical characteristics of chitosan Ag2S QDs, which can be carefully studied due to their environmental activity. X-ray diffraction (XRD) measurements reveal that chitosan-coated Ag2S QDs exhibit higher-intensity peaks. The XRD analysis reports a range of crystallite sizes, with a minimum size of 8 nm and a maximum size of 12 nm. Fourier-transform infrared (FTIR) spectroscopy confirms the presence of chitosan through the detection of functional group peaks. High-resolution transmission electron microscopy (HRTEM) studies indicate that the size of the artificial quantum dots is 6 nm. Energy-dispersive X-ray spectroscopy (EDX) verifies the composition of chitosan-encapsulated Ag2S QDs. Moreover, the chitosan Ag2S quantum dots demonstrate exceptional photocatalytic activity, as evidenced by the degradation of 92% of methylene blue dye within one hour. This research provides valuable insights into the synthesis, properties, and potential applications of chitosan-encapsulated Ag2S quantum dots in diverse fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call