Abstract

This article reported that the properties of zinc oxide (ZnO) nanostructures were modified by the thermal oxidation process at different temperatures in the range of 200℃ to 600℃ for 1 h. The Zn films were deposited on a stainless steel mesh by using the electrochemical deposition technique. The elemental composition of Zn and O was exhibited via energy-dispersed X-ray spectroscopy in which the atomic ratio of O/Zn increased with the increase of oxidation temperature. The results showed that oxidation temperature has a significant effect on the morphological and crystal structure. The nanosheet structure of the as-deposited film transferred to the intermixing of porous nanosheet and urchin-like structure at the oxidation temperature of 600℃ while the crystallinities of mixing Zn and ZnO were improved to only ZnO when increasing the oxidation temperature. ZnO films were tested for photocatalytic activity in methylene blue under various ultraviolet irradiation times. The best condition of ZnO for photocatalytic activity was an oxidation temperature of 600℃ with the highest crystallinity and surface area that showed the highest decomposition rate and percentage degradation of 8.150 ´ 10-3 min-1 and 74.06%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call