Abstract

SiC-BiVO4-P and SiC-BiVO4-H composites have been prepared by precipitation method and hydrothermal method, respectively. Rod-like BiVO4 particles dispersed on the surface of micro-sized SiC particles homogeneously in SiC-BiVO4-H. Due to the formed heterostructure between BiVO4 and SiC, photo-generated electrons and holes were effectively separated. Under visible light irradiation, SiC-BiVO4-H exhibited the best performance for photocatalytic oxidation of Rhodamine B, achieved about 7.5 times improvement in photocatalytic degradation rate constants compared with that of the pristine SiC powder. The possible photocatalysis mechanism of SiC/BiVO4 related to the band positions of the semiconductors under visible light irradiation was also discussed in detail. In addition, the radicals trapping experiments revealed that all three radicals (holes, OH, and O2−) play an important role in the Rhodamine B degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call