Abstract
Bismuth-doped TiO2 nanotubes (Bi-TNT) were successfully synthesized by combination of sol–gel and hydrothermal methods. The synthesized photocatalyst was efficiently used for degradation of rhodamine B (RhB) dye under direct sunlight irradiation. Subsequent characterization of synthesized photocatalysts was carried out using PXRD, SEM, TEM, EDX, FT-IR, Raman, N2 adsorption, TPD-NH3, UV–Vis DRS, XRF and ICP techniques. The surface area of the TiO2 nanoparticles increased after tubular structure formation (TiO2 nanoparticles—114.21 m2/g, TiO2 nanotube—191.93 m2/g). The degradation studies revealed that initial rate of photocatalytic degradation of RhB dye using Bi-TNT was 5.56, 4.16, 1.30 and 2.38 times higher as compared to TNP, Bi-TNP, TNT and Degussa P-25 TiO2 (P-25), respectively, under direct sunlight irradiation. The enhanced photocatalytic activity of Bi-TNT may be due to the increase in the surface area and Bi doping, which leads to effective separation of photogenerated carriers. The degradation was confirmed by chemical oxygen demand, total organic carbon and total inorganic carbon analysis of the degraded dye solutions. The probable degradation mechanism of RhB dye has also been proposed using liquid chromatography-mass spectrometry analysis of degraded samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.