Abstract
In the present work, a well-defined dumbbell shaped ZnO was synthesized by hydrothermal method and ZnO dumbbell/reduced graphene oxide (ZnO/rGO) nanocomposites were prepared by a simple solution mixing method with the different rGO loading amount. The formation of nanocomposites, crystal structure, shape, size and optical properties of the ZnO/rGO nanocomposites were investigated using various analytical techniques. The photocatalytic degradation efficiency of synthesized materials was evaluated by the degradation of aqueous Methyl Orange (MO) and Methylene Blue (MB) under UV–Visible light irradiation. The results revealed that 3 wt% rGO loaded ZnO dumbbell (ZnO-3% rGO) exhibited the higher photocatalytic degradation efficiency than pure ZnO dumbbell and rGO. The enhancement in the photocatalytic dye degradation efficiency of ZnO-3% rGO is attributed to the efficient dye adsorption nature, a red shift in light absorption and inhibition of photo-excited electron-hole pair recombination rate. The photocatalytic dye degradation efficiency also evaluated for various catalyst dosage, dye concentration and pH of the solution. Moreover, it was demonstrated the stability of catalyst over a repeated cycle of dye treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.