Abstract

UV-induced DNA damage is the basis for the development of UV-mediated skin cancer because reduction of DNA damage lowers the risk for photocarcinogenesis. The cytokine interleukin (IL)-12 was shown to exhibit the capacity to reduce UV-induced DNA damage presumably via induction of nucleotide excision repair. Because IL-12 is also produced in the skin, we wondered whether endogenous IL-12 protects from photocarcinogenesis. Therefore, we used knockout mice that lack the IL-12p40 chain and thus do not secrete biologically active IL-12. IL-12p40 knockout (IL-12p40-/-) and wild-type (wt) mice were exposed thrice weekly to UV. Skin biopsies obtained after 6 weeks revealed significantly increased numbers of sunburn cells in IL-12p40-/- mice. Additionally, a higher load of UV-induced pyrimidine dimers could be detected in the skin of UV-exposed IL-12p40-/- mice. Staining of epidermal sheets with an antibody against the tumor suppressor gene p53 revealed a higher number of p53 patches in the skin of IL-12p40-/- mice. After approximately 200 days, first skin tumors developed. Kaplan-Meier analysis indicated a significantly increased probability of tumor development in the IL-12p40-/- mice. In addition, the number of tumors developing in the individual mice was significantly higher in IL-12p40-/- mice than in wt mice. Tumors obtained in IL-12p40-/- mice grew faster than those obtained from wt mice on inoculation into nu/nu mice. This was confirmed in an electrophysiologic assay evaluating the intrinsic invasive potency of tumor cells. Together, these data indicate that IL-12 deficiency is associated with an increased risk to develop UV-induced skin cancer, implying that endogenous IL-12 may protect from photocarcinogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.