Abstract

Constructing photocatalytically favorable surface structure in synthesizing photocatalysts plays an important role in enhancing the photocatalytic activity of semiconductor photocatalysts. In this report, oxygen-deficient anatase TiO2 sheets with dominant {001} facets were synthesized via a facile one-pot hydrothermal route with solid metallic titanium diboride as precursor. In contrast to anatase TiO2 sheets with dominant {001} facets free of oxygen deficiency and surface fluorine, anatase TiO2 sheets with oxygen deficiency and surface fluorine are subject to obvious surface reconstruction as evidenced by two new Raman-active modes at 155 and 171 cm−1 and the weakened B1g mode at 397 cm−1. Further analysis based on X-ray photoelectron spectroscopy (XPS) spectra of Pt 4f and F 1s provided a clear evidence for the greatly strengthened interaction between Pt-loaded and TiO2 matrix as a result of a special electron-transfer process on the reconstructed surface structure of TiO2 with both oxygen deficiency an...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call