Abstract

Acetaminophen is commonly used as an antipyretic or analgesics agent and poses threat to human health. In this research, TiO2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a hydrothermal method. FT-IR, UV-Vis, XRD, and TGA were used to characterize the catalysts. The acetaminophen degradation rate can reach up to 96% under UV light irradiation for 3h and with the 5% GR-TNT dosage of 0.1gL−1. Further experiments were done to probe the mechanism of the photocatalytic reaction catalyzed by the GR-TNT composite. EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the holes are the main oxidation species in the photocatalytic process. This study provides a new prospect for acetaminophen degradation by using high efficiency catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call