Abstract

Phosphorus removal is essential to avoid eutrophication in water bodies. Layered double hydroxides (LDHs) are widely used to scavenge phosphate through intercalated ion exchange or surface complexation. Moreover, LDHs have attracted increasing attention as electrode modifiers for supercapacitors. Researchers have begun to re-delve the electrosorption technology according to the fundamental principle of electrical double layers. Herein, we propose a new phosphate removal method inspired by the adsorption characteristic and electrical double-layer capacitive properties of LDHs through electrosorption via capacitive deionization. We present a series of experiments to study the enhanced phosphate removal under an electric field via multiple mechanisms on the MgAl-LDHs/AC electrode. The uptake of phosphate by MgAl-LDHs/AC was investigated as a function of phosphate concentration, applied voltage, electrode materials, and temperature. The MgAl-LDHs/AC electrode possessed a salt removal capacity of 67.92mg PO43−·g−1 (1.2V, 250mg·L−1 KH2PO4, 30°C). The electrosorption kinetics of phosphate ions onto the capacitive deionization electrode followed the pseudo-second-order kinetics model rather than the pseudo-first-order kinetics model. Furthermore, the adsorption isotherms of phosphate on the MgAl-LDHs/AC electrode fitted the Freundlich model better than the Langmuir model. The proposed method could be used for phosphate removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.