Abstract

The contribution of Cu(III) produced during heterogeneous peroxydisulfate (PDS) activation to pollutant removal is largely unknown. Herein, a composite catalyst is prepared with Cu-based metal organic framework (Cu-MOF) derived Cu nanoparticles decorated in a three-dimensional reduced graphene oxide (3D RGO) network. The 3D RGO network overcomes the aggregation of nanosized zero-valent copper and reduces the copper consumption during the PDS activation reaction. The Cu/RGO catalyst exhibits high catalytic activity for 2,4-dichlorophenol (2,4-DCP) degradation in a wide pH range of 3–9, with a low Cu dosage that is only 0.075 times that of previous reports with zero-valent copper. Moreover, a high mineralization ratio (69.2 %) of 2,4-DCP is achieved within 30 min, and the Cu/RGO catalyst shows high reactivity toward aromatic compounds with hydroxyl and chlorinated groups. Unlike normal sulfate radical-based advanced oxidation, alcohols show negligible impacts on the reaction, suggesting that Cu(III), rather than SO4− and OH, dominates the degradation process. We believe that PDS activation by 3D Cu/RGO, with Cu(III) as the main active species, provides new insights in selective organic pollutant removal in wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.