Abstract

Organic solvent nanofiltration (OSN) is emerging as an efficient and emerging approach for separation and purification of solute from organic solvents, which however were severely underdeveloped because of the low permeance of membranes. Herein, a novel mixed matrix membrane (MMM) was developed by incorporation of modified mesoporous silica nanoparticle (MSN) into commercially-available polydimethylsiloxane (PDMS) matrix for removal of trace impurities, such as Evans blue or vitamin B12, from different organic solvents. Notably, because of the designed nanoscale spaces originated from MSN, the permeance of the optimized MMM reached up to 31.2 L m−2.h−1.MPa−1, around 17-fold enhancement compared with that of pristine PDMS membrane. Low-field nuclear magnetic resonance was employed to trace the solvent state in the MMM. The MMM exhibited high MeOH absorption capability but low-swelling attribute, certificating the high permeance and long-term stability of the MMM. The MMM was stably tested in MeOH solution for more than 80 h, indicating the great promise for future practical OSN applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call