Abstract
Capacitive deionization (CDI) is a promising technology for the desalination of brackish water due to its potentially high energy efficiency and its relatively low costs. One of the most challenging issues limiting current CDI cell performance is poor cycling stability. CDI can show highly reproducible salt adsorption capacities (SACs) for hundreds of cycles in oxygen-free electrolyte, but by contrast poor stability when oxygen is present due to a gradual oxidation of the carbon anode. This oxidation leads to increased concentration of oxygen-containing surface functional groups within the micropores of the carbon anode, increasing parasitic co-ion current and decreasing SAC. In this work, activated carbon (AC) was chemically modified with titania to achieve additional catalytic activity for oxygen-reduction reactions on the electrodes, preventing oxygen from participating in carbon oxidation. Using this approach, we show that the SAC can be increased and the cycling stability prolonged in electrochemically highly demanding oxygen-saturated saline media (5mM NaCl). The electrochemical oxygen reduction reaction (ORR) occurring in our CDI cell was evaluated by the number of electron transfers during charging and discharging. It was found that, depending on the amount of titania, different ORR pathways take place. A loading of 15 mass% titania presents the best CDI performance and also demonstrates a favorable three-electron transfer ORR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.