Abstract
The methoxycarbonylation of anilines stands as an attractive method for the phosgene-free production of carbamates. Despite the high yields obtained for ceria catalysts, the reduction of the amount of side products and the prevention of catalyst deactivation still represent major hurdles in this chemistry. One advantage of ceria is the possibility of tuning its reactivity by doping its lattice with other metals. In the present work, a series of doped ceria-based materials, prepared by substitution with metals, are evaluated in the methoxycarbonylation of 2,4-diaminotoluene with dimethyl carbonate. Among all catalysts, containing Eu, Hf, La, Pr, Sm, Tb, Y or Zr, ceria promoted with 2 mol % Zr exhibited 96 % selectivity towards the desired carbamates, improving the pure CeO2 catalyst. Density functional theory demonstrates that two descriptors are needed: 1) a geometric factor that governs the reduction of energy barriers for carbamate formation through ureas; 2) catalyst basicity as N-H bonds need to be activated. Assessment in subsequent reaction cycles revealed that the CeO2 -ZrO2 catalyst is more stable than bulk CeO2 , along with the reduction of fouling processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.