Abstract

Our present work proposes a systematic geometric model comprising vertical dual silver nanostrips placed on the top of a thin-film amorphous silicon solar cell. In the first layer, cylindrical silver nanostrips are embedded in the antireflection coating and the other one is placed just above it. Combining the two improves the absorption over the wide spectral range. A finite-difference time domain technique has been used to confirm that a vertical dual silver nanostructure improves absorption over a broad spectrum in comparison to a single layer. Size, shape, and interspacing of the nanostructures have been tuned to obtain the preeminent results. This optimized geometry gives a total quantum efficiency of 32.02% under AM1.5G.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.