Abstract

Enhanced performance of symmetrical solid oxide fuel cell (SSOFC) is reported by using a doped ceria buffer layer, which can solve the issues during the operation of traditional solid oxide fuel cells, such as carbon deposition and sulfur poisoning. In this work, cobalt-free perovskite oxide La0.8Sr0.2FeO3-δ (LSF) is applied as a novel stable electrode material for symmetrical solid oxide fuel cell. The electrical conductivities of LSF are 141.1Scm−1 and 0.138Scm−1 in air and humidified H2 (3% H2O) at 800°C, respectively. Gadolinium doped ceria (GDC) buffer layer is fabricated by screen printing onto the YSZ electrolyte, which dramatically enhances the electrochemical performance by more than 90 percent at 700°C. The improvement of SSOFC performance is attributed to the elimination of reactivity and the optimization of interface between YSZ electrolyte and LSF electrode. These results demonstrate that the doped ceria buffer layer provides a highly repeatable route for further improving the performance of YSZ-based SSOFC, with potentially important implications for developing cost-effective SSOFCs with huge application opportunities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.