Abstract

At present, enhancement of hybrid metal joints for tensile pull-out load through overlap surfaces with a macro-scale roughness is one scope of research. The macro-scale roughness is established through the modified arc-welding process, called “cold metal transfer pin” (CMT-pin), which enables repetitive manufacturing of arrays of metal reinforcements (pins) on parent metal surfaces.Hybrid metal joints between parent steel sleeves and cast aluminium alloy have been investigated. Joint surfaces of parent steel sleeves, which have cylindrical cross-sections, are modified by cylinder and ballhead pins. Cast metal joints were tested under uniaxial tensile loading. At the same time, their load transfer behaviour was determined. Results of tensile tests of hybrid metal joints with different kinds of pins, as well as with different amounts of pins are presented. Comparisons with reference joints without pins or with steel sleeves containing a harmonious triangular polygon cross-section ("P3G") and endings with an enlarged diameter are carried out.The results show an enhanced load transfer performance in the case of hybrid metal joints with pins, as well as enhanced performance measures compared to reference joints. It is also shown that the pin quantity has a major impact on the ultimate joint strength and the irreversible energy absorption density. The use of a certain quantity of pins leads to a change of the failure shape of the joints, which includes steel sleeve pull-out and pin shear to rupture of the cast aluminium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.