Abstract
Biaxial stretching technique has been known to improve the toughness of polylactide (PLA) film. Furthermore, blending with an additive is another way to control the mechanical properties of the product. The integrated effect of simultaneous biaxial stretching and blending with silane coupling agent on the properties of PLA film is examined in this study. The PLA pellets are melt compounded with various amounts of 3-aminopropyltriethoxy silane (APS). Then, the films are prepared by cast film extrusion and simultaneous biaxial stretching process with a stretching speed of 75 mm s–1. The relationships among the crystallinity, tensile properties, and thermal shrinkage of the prepared films are investigated. The crystallinity of PLA is significantly induced in the film by the stretching technique. An increase in the additive content also facilitates the polymeric crystallinity. The elongation at the break of the biaxially stretched film increases with the additive content, which corresponds with the PLA crystallinity. Compared to the pristine PLA film, the addition of 1% APS improves tensile strength in a transverse direction of the film about 10 times. The thermal shrinkage of the obtained films was evaluated to assess their applications as heat-shrinkable films. The prepared films show a thermal shrinkage of 45%, which are comparable to that of a commercial shrink film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.