Abstract

A new concept is proposed to realize solid-state high-performance lithium polymer batteries in which two different polymers are used as ionically conductive matrices in the cathode and in the separator. A solid, low molecular weight poly(ethylene glycol) was used in the cathode while a blend with a higher molecular weight poly(ethylene oxide) (PEO) was used in the separator. The enhanced transport properties in the cathodic compartment allow us to discharge the battery (190 mAh g −1) at a moderate temperature (65°C) in a reasonable time (about 3.3 h). Batteries cycled at 100°C showed enhanced performance with respect to PEO-based batteries. At a power density of about 416 W kg −1, energy density as high as 460 Wh kg −1, based on the weight of the active material, was achieved in about 1 h of discharge. The work was developed within the ALPE (Advanced Lithium Polymer Electric Vehicle Battery) project, an Italian integrated project devoted to the realization of lithium polymer batteries for electric vehicle applications, in collaboration with the Osaka National Research Institute.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.