Abstract

Lithium-sulfur (Li-S) batteries with high theoretical energy density are considered as the most promising devices for rechargeable energy-storage systems. However, their actual applications are rather limited by the shuttle effect of lithium polysulfides (LiPSs) and the sluggish redox kinetics. Here, the boron nitride nanosheets are homodispersedly embedded into N-doping porous carbon fibers (BNNSs/CHFs) by an electrospinning technique and a subsequent in situ pyrolysis process. The hybridized BNNSs/CHFs can be smartly designed as a multifunctional separation coating onto the commercial PP membrane to enhance the electrochemical performance of Li-S batteries. As a result, the Li-S batteries with extra BNNSs/CHF modification deliver a highly reversible discharge capacity of 830.4 mA h g-1 at a current density of 1 C. Even under 4 C, the discharge specific capacity can reach up to 609.9 mA h g-1 and maintain at 553.9 mA h g-1 after 500 cycles, showing a low capacity decay of 0.01836% per cycle. It is considered that the excellent performance is attributed to the synergistic effect of adsorption and catalysis of the BNNSs/CHF coating used. First, this coating can efficiently reduce the charge transfer resistance and enhance Li-ion diffusion, due to increased catalytic activity from strong electronic interactions between BNNSs and N-doping CHFs. Second, the combination of polar BNNSs and abundant pore structures within the hybridized BNNSs/CHF networks can highly facilitate an adsorption for LiPSs. Here, we believed that this work would provide a promising strategy to increase the Li-S batteries' performance by introducing hybridized BNNSs/N-doping carbon networks, which could efficiently suppress the LiPSs' shuttle effect and improve the electrochemical kinetics of Li-S batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call