Abstract

The metal halide perovskite CH3NH3PbI3 (MAP) can be applied as the shell layer of lead sulfide quantum dots (PbS QDs) for improving solar power conversion efficiency. However, basic physics for this PbS core/MAP shell QD system is still unclear and needs to be clarified to further improve efficiency. Therefore, in this study, we investigate how MAP shell thickness affects device performance and dynamics of charge carriers for PbS QD-sensitized solar cells. Covering the PbS QDs with the MAP shell layers of an appropriate thickness around 0.34 nm greatly suppresses charge carrier recombination at surface defects along with improved carrier transport to neighboring oxide and polymer layers. Therefore, this MAP shell thickness provides the highest open-circuit voltage, short-circuit current density, and fill factor for solar cells. Overall power conversion efficiencies of these solar cells reached about 4.1%, which is about six-fold higher than that for solar cells without MAP (about 0.7%). Additionally, use of the MAP shell layers can prevent oxidation of PbS QDs and, therefore, makes a degradation of solar cell performance slower in air.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call