Abstract

Defects at the interface between the perovskite and charge transport layers in perovskite solar cells serve as sites for non-radiative charge recombination as they are the main energy loss channels that reduce the open-circuit voltage. In this study, we used a small molecule, N-methyl-4-piperidone (NMPD), as an interfacial passivation filler between the perovskite and electron transport layers in inverted organic–inorganic hybrid CH3NH3PbI3 perovskite solar cells. The filler deactivates the charge traps at the interface, which are responsible for non-radiative charge recombination, and improves the electron extraction efficiency. Consequently, it enhanced the power conversion efficiency (PCE) from 16.3% to 20.1% by increasing both the open-circuit voltage and short-circuit current. Furthermore, after 800 h of aging without encapsulation at 35% humidity and 25 °C temperature, the device with NMPD filler retained 78.4% of the initial PCE. This indicates that the interfacial modification filler, with a single carbonyl group, can effectively improve the efficiency as well as the stability of perovskite devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.