Abstract

Abstract To reduce the operating temperature of solid oxide fuel cells (SOFCs), we develop a highly conductive, bimodal-shape Nd 0.2 Ce 0.8 O 2−δ (NDC) materials at an intermediate temperature (IT) with excellent sinterability for the anode-supported cell design. The advanced bimodal NDC composite materials consist of powders synthesized by both the glycine-nitrate process and coprecipitation methods. The bimodal NDC electrolyte shows 2–3 fold higher conductivity than that of singly processed NDC electrolytes in the IT range. Further, this doubly processed highly conductive NDC material for the electrolyte and composite cathode significantly improves the performance of the anode-supported configuration of IT-SOFCs. This is due to the rapid transport of oxygen-ions in the electrolyte, small grain sizes of the bimodal cathode with a high porosity, and the improved interfacial property between the electrolyte and cathode, which results in decreased ohmic and polarization resistance of bimodal-based cells at 550–650 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.