Abstract

The performance of high current discharges can be improved by applying central ICRF heating before or shortly after the onset of sawtooth activity in the plasma current rise phase. Long sawtooth-free periods have been obtained which result in a transiently-enhanced discharge performance. High Te(0)=9-10.5 keV with peaked profiles Te(0)/(Te)=3-4 were obtained giving values of Ne(0)Te(0) up to 6*1020 (keV m-3). Improvements in Ti(0) and neutron production are observed. A best value of nD(0)Ti(0) tau E=1.65*1020 (m-3 keV s) was achieved. Local transport simulation shows that the electron and ion thermal diffusivities do not differ substantially in the two cases of current-rise (CR) and flat-top (FT) heating, the performance of the central plasma region being enhanced, in the case of current-rise, entirely by the elimination of the sawtooth instability. The maximum D-D reaction rate is enhanced by a factor of 2 compared to the flat-top value. An appreciable part of the reaction rate is attributed to 2nd harmonic deuterium (2 omega CD) heating. In all current-rise discharges radiation amounts to 25-50% of total power and Zeff remains roughly constant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.