Abstract
InGaN/GaN multi-quantum well light-emitting diodes (LEDs) are conventionally grown on a sapphire substrate due to a lack of compatible substrates with a high compressive strain. This is a result of the relatively large lattice, and thermal expansion coefficient mismatches between GaN and sapphire. The compressive strain is considered to be a major obstacle to further improve next-generation high-performance GaN-based LEDs. In this paper, we have designed, electroplated, and tested an efficient substrate using a patterned copper (Cu) layer on the backside of sapphire to relax the compressive strain in a GaN epilayer. The patterned Cu layer has a significant function in that it supports the GaN/sapphire LEDs with an external tensile stress. The external tensile stress is capable of compensating for the compressive strain in the GaN/sapphire LEDs by controlling the curvature of the wafer bowing. This patterned Cu layer, when applied to the GaN/sapphire LEDs, suppresses the compressive strain by up to 0.28 GPa. The GaN-based LEDs on this innovative and effective sapphire/Cu substrate offer improved optical and electrical performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.