Abstract

In this work, we investigated the influence of MoS2 functioning as an electron transport layer (ETL) on the inverted flexible organic photovoltaics (FOPVs). Three ETLs, including MoS2, lithium quinolate (Liq), and a MoS2/Liq bilayer, were evaporated onto ITO-integrated polyethylene terephthalate substrates (PET-ITO), and the properties of transmittance, water contact angle, and reflectivity of the films were analyzed. The results revealed that MoS2 was helpful to improve the lipophilicity of the surface of the ETL, which was conducive to the deposition of the active layer. In addition, the reflectivity of MoS2 to the light ranging from 400 to 600 nm was the largest among the pristine PET-ITO substrate and the PET-ITO coated with three ETLs, which promoted the efficient use of the light. The efficiency of the FOPV with MoS2/Liq ETL was 73% higher than that of the pristine device. This was attributed to the nearly two-fold amplification of the MoS2 array to the light field, which promoted the FOPV to absorb more light. Moreover, the efficiency of the FOPV with MoS2 was maintained under different illumination angles and bending angles. The results demonstrate the promising applications of MoS2 in the fabrication of FOPVs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.