Abstract

Electrothermal plasma sources have been introduced as a method to propel frozen hydrogenic pellets for fueling of future magnetic fusion reactors. These sources are also useful as mini-thrusters in space shuttles, pre-injectors in hypervelocity launchers and igniters in electrothermal-chemical Guns. The source is a capillary discharge that generates the plasma from the ablation of a liner in an ablation-dominated regime, or from the flow of gas into the capillary in an ablation-free regime. Most electrothermal plasma sources uses pulse power delivery system with a pulse length in the range of 100 μs with FWHM of 50 μs. This research is a computational study on the effect of extending the top of the discharge current pulse to the range of 1,000 μs on the source exit parameter to achieve higher pressures and better exit velocities. Calculations using 0.4 cm diameter, 9.0 cm length Lexan polycarbonate capillary source, using ideal and nonideal plasma models, show that extended flattop pulses at fixed amplitude produce more ablated mass which scales linearly with increased pulse length, however, other plasma parameters remain almost constant. Results suggest that quasi-steady state operation of an electrothermal plasma source may provide constant exit pressure and velocity for pellet injectors for future magnetic fusion reactors deep fueling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.