Abstract

Particulate manganese oxide (MnOx) deposition in drinking water distribution systems (DWDS) gives rise to the risk of water discoloration at the consumers’ tap; however, its role in the fate and transport of trace organic pollutants in DWDS is not clear. Perfluorooctanoic acid (PFOA), a persistent organic pollutant frequently detected in natural water, was selected to investigate the potential effect of MnOx on its transportation behavior under DWDS conditions through laboratory batch experiments. The results show that PFOA can be greatly combined with MnOx formed in-situ through a Mn(II) oxidation process by free chlorine. However, the accumulation of PFOA by preformed MnOx was negligible. It was found that 1 mg/L Mn captured over 50% of PFOA with an initial concentration of 50 ng/L during oxidation. The water compositions of actual water could contribute to the effect of PFOA accumulation to a certain extent. Characterization of the solid products revealed that PFOA is homogenously embedded into MnOx. The combination of PFOA with MnOx occurs through a bridging effect of Mn(II) between the surface hydroxyls of MnOx and the -COOH group of PFOA. The resulting MnOx-PFOA particles were more inclined to agglomerate, enabling possibly easy deposition onto the pipe wall than ordinary MnOx particles. This study provides insights into the co-occurrence of metal deposits with PFOA and the potential risks posed by PFOA accumulation to consumers through the water distribution process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call