Abstract
Breast cancer (BC) is a prevalent disease worldwide, and accurate diagnoses are vital for successful treatment. Histopathological (HI) inspection, particularly the detection of mitotic nuclei, has played a pivotal function in the prognosis and diagnosis of BC. It includes the detection and classification of mitotic nuclei within breast tissue samples. Conventionally, the detection of mitotic nuclei has been a subjective task and is time-consuming for pathologists to perform manually. Automatic classification using computer algorithms, especially deep learning (DL) algorithms, has been developed as a beneficial alternative. DL and CNNs particularly have shown outstanding performance in different image classification tasks, including mitotic nuclei classification. CNNs can learn intricate hierarchical features from HI images, making them suitable for detecting subtle patterns related to the mitotic nuclei. In this article, we present an Enhanced Pelican Optimization Algorithm with a Deep Learning-Driven Mitotic Nuclei Classification (EPOADL-MNC) technique on Breast HI. This developed EPOADL-MNC system examines the histopathology images for the classification of mitotic and non-mitotic cells. In this presented EPOADL-MNC technique, the ShuffleNet model can be employed for the feature extraction method. In the hyperparameter tuning procedure, the EPOADL-MNC algorithm makes use of the EPOA system to alter the hyperparameters of the ShuffleNet model. Finally, we used an adaptive neuro-fuzzy inference system (ANFIS) for the classification and detection of mitotic cell nuclei on histopathology images. A series of simulations took place to validate the improved detection performance of the EPOADL-MNC technique. The comprehensive outcomes highlighted the better outcomes of the EPOADL-MNC algorithm compared to existing DL techniques with a maximum accuracy of 97.83%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.