Abstract

Epstein-Barr virus (EBV) is associated with various types of human malignancies and with programmed death ligand (PD-L) 1 expression in neoplastic cells. However, in EBV-associated malignant lymphomas and lymphoproliferative disorders (LPDs), there is limited information regarding PD-L1 expression profiles among different histologic types and patterns of EBV latency. First, we investigated PD-L1 and EBV latent gene expression using conventional immunohistochemistry and in situ hybridization in 42 EBV-associated malignant lymphomas and LPDs. Classic Hodgkin lymphoma showed the highest PD-L1 expression with diffuse expression in all cases, followed by diffuse large B-cell lymphoma/Burkitt lymphoma, LPDs, and extranodal NK/T-cell lymphoma. EBV latency at the case level was not associated with PD-L1 expression. We further evaluated the expression of PD-L1 and EBV latent genes in tumor cells at single-cell resolution using multiplex fluorescence imaging. This analysis revealed that positivity rates of latent membrane protein (LMP) 1 in tumor cells were 1.0% to 89.5% (mean 35.4%) in latency type II/III cases, and LMP1 + cells showed more frequent PD-L1 expression than LMP1 - cells ( P <0.0001, paired t test). In contrast, no association was observed between EBV nuclear antigen 2 and PD-L1 expression. Notably, tumor cells exhibiting Hodgkin/Reed-Sternberg cell-like morphology co-expressed PD-L1 and LMP1 more often than those that do not. Our observations suggested that LMP1 upregulates PD-L1 expression and is a potential biomarker for predicting the efficacy of immune checkpoint inhibitors. In addition, the heterogeneous expression of PD-L1 and EBV latent genes may produce diverse tumor cells with different oncogenic and immune-evasive properties, leading to resistance to targeted therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call