Abstract

Application of biochar in heavy metal remediation suffers from lack of long-term stability. Phosphate-solubilizing bacteria (PSB) are able to elevate P release and the subsequent reaction with Pb to form stable pyromorphite. This study investigated the feasibility of applying PSB modified biochar to enhance immobilization of Pb2+. An alkaline biochar produced from rice husk (RB) and a slightly acidic biochar produced from sludge (SB) were selected. It showed that the biochars can effectively remove Pb2+ via adsorption, i.e., aqueous Pb concentrations after RB and SB addition were reduced by 18.61 and 53.89% respectively. The addition of PSB increased the Pb2+ removal for both biochars (to 24.11 and 60.85%, respectively). In particular, PSB significantly enhanced the formation of stable pyromorphite on surface of SB. This is due to that the evenly distributed PSB enhanced P release and regulated pH on the biochar surface. Moreover, small particles (<0.074 mm) showed their higher ability to induce the formation of pyromorphite, for both RB and SB. Nevertheless, SB demonstrated higher capability of sorption, together with its more abundant P content, which provided a more suitable platform to attract PSB to immobilize heavy metals. Therefore, the combination of biochar and PSB is a promising candidate material for heavy metal remediation. However, the types and particle size distribution of biochar should be addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.