Abstract

This study investigated the abilities of electrochemically active bacteria (EAB) as bio-catalysts for Pb(II) bioreduction in an attached growth reactor. Electrically conductive carbon nanofibers (CNF) were used as bacterial scaffolds to facilitate electron transfer between EAB and Pb(II). Our results demonstrated that the CNF attached growth reactor can remove > 80% and > 90% of Pb(II) from solution at 0.5 mg/L and 5.0 mg/L concentrations, respectively, and maintained Pb(II) levels < 0.10 mg/L over repeated Pb(II) dosages dosed at all concentrations. Experimental measurements by SEM-EDX and ICP-OES provided evidence that Pb(II) was reduced to Pb0, suggesting that Pb(II) was adsorbed onto CNFs, and subsequently bioreduced. Numerical modelling was used to estimate Pb(II) concentrations along the CNFs via capturing Pb(II)’s diffusive transport, and the removal mechanisms governed by EAB and CNF adsorption. The model simulation results demonstrated that Pb(II) bioreduction was dominant in the reactor and the significance of Monod kinetics, biofilm thickness and Pb(II) dosage concentration on its removal. This study is the first to prove EAB’s ability to treat Pb(II) from contaminated waters in an attached growth configuration. The findings here demonstrate that CNFs can boost biological treatment efficacies in wastewater and/or water treatment to meet stringent water guidelines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.