Abstract

In Germany, rabies in bats is a notifiable zoonotic disease, which is caused by European bat lyssaviruses type 1 and 2 (EBLV-1 and 2), and the recently discovered new lyssavirus species Bokeloh bat lyssavirus (BBLV). As the understanding of bat rabies in insectivorous bat species is limited, in addition to routine bat rabies diagnosis, an enhanced passive surveillance study, i.e. the retrospective investigation of dead bats that had not been tested for rabies, was initiated in 1998 to study the distribution, abundance and epidemiology of lyssavirus infections in bats from Germany. A total number of 5478 individuals representing 21 bat species within two families were included in this study. The Noctule bat (Nyctalus noctula) and the Common pipistrelle (Pipistrellus pipistrellus) represented the most specimens submitted. Of all investigated bats, 1.17% tested positive for lyssaviruses using the fluorescent antibody test (FAT). The vast majority of positive cases was identified as EBLV-1, predominately associated with the Serotine bat (Eptesicus serotinus). However, rabies cases in other species, i.e. Nathusius' pipistrelle bat (Pipistrellus nathusii), P. pipistrellus and Brown long-eared bat (Plecotus auritus) were also characterized as EBLV-1. In contrast, EBLV-2 was isolated from three Daubenton's bats (Myotis daubentonii). These three cases contribute significantly to the understanding of EBLV-2 infections in Germany as only one case had been reported prior to this study. This enhanced passive surveillance indicated that besides known reservoir species, further bat species are affected by lyssavirus infections. Given the increasing diversity of lyssaviruses and bats as reservoir host species worldwide, lyssavirus positive specimens, i.e. both bat and virus need to be confirmed by molecular techniques.

Highlights

  • Lyssaviruses are non-segmented negative-strand RNA viruses of the order Mononegavirales, family Rhabdoviridae and causative agents of rabies in bats and other mammals as well as in humans [1]

  • The results show that a considerable number of additional bat rabies cases can be detected, improving the knowledge on the frequency, geographical distribution and reservoir-association of bat lyssavirus infections in Germany

  • 21 out of the 23 indigenous bat species in Germany were included (Table 1), the proportion of bat species differed per federal state

Read more

Summary

Introduction

Lyssaviruses are non-segmented negative-strand RNA viruses of the order Mononegavirales, family Rhabdoviridae and causative agents of rabies in bats and other mammals as well as in humans [1]. While rabies in dogs and other carnivores has been known since antiquity, the first evidence of rabies in haematophagous and insectivorous bats was reported from the Americas in the first half of the 20th century [2]. Antigenic and genetic analyses revealed the diversity of different lyssavirus species, and to date, besides classical rabies virus (RABV), thirteen additional lyssaviruses have been discovered, mostly in bats [3]. Beyond Europe, Lagos bat virus (LBV), Mokola virus (MOKV), Duvenhage virus (DUVV), Shimoni bat virus (SHBV), and Ikoma lyssavirus (IKOV) were found in Africa. With the exception of MOKV and IKOV, all of those viruses were detected in bats [3]. In Australia, which has a long history of freedom from classical rabies, Australian bat lyssavirus (ABLV) is found in insectivorous and pteropid bats [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call