Abstract
The generalized linear least squares (GLLS) method has been shown to successfully construct unbiased parametric images from dynamic positron emission tomography (PET). However, the high level of noise intrinsic in single photon emission computed tomography (SPECT) can give rise to unsuccessful voxel-wise fitting using GLLS, resulting in physiologically meaningless estimates, such as negative kinetic parameters for compartment models. In this study, three approaches were investigated to improve the reliability of GLLS applied to dynamic SPECT data. The simulation and experimental results showed that GLLS with the aid of Bootstrap Monte Carlo method proved successful in generating parametric images and preserving all of the major advantages of all the originally GLLS method, although at the expense of increased computation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.