Abstract

The aim of this study was to evaluate the underlying mechanism of enhanced oral absorption of paclitaxel (PTX)-loaded chitosan–vitamin E succinate–N-acetyl-l-cysteine (CS–VES–NAC) nanomicelles from the cellular level. In aqueous solution, CS–VES–NAC copolymer self-assembled into the polymeric nanomicelles, with the size ranging from 190 to 240 nm and the drug loading content as high as 20.5 %. Cytotoxicity results showed that the PTX-loaded nanomicelles exhibited the similar effect to PTX solution (PTX-Sol) on Caco-2 cells, but no toxicity observed for blank CS–VES–NAC nanomicelles. The cellular uptake of PTX was significantly increased by CS–VES–NAC nanomicelles, compared with that of PTX-Sol, due to the possible escapement of P-glycoprotein (P-gp) efflux pumps by endocytosis pathway. Confocal laser scanning microscope (CLSM) images also confirmed CS–VES–NAC nanomicelles could be effectively internalized by Caco-2 cells. More importantly, P app value of PTX-loaded CS–VES–NAC nanomicelles was 2.3-fold higher than that of PTX-Sol, and the efflux ratio decreased by more than 10.8-fold for the nanomicelles. As a consequence of opening of tight junctions and P-gp inhibition induced by free CS–VES–NAC copolymer, the P app value of PTX was almost increased up to 19.5-fold. All the results indicate that CS–VES–NAC copolymer hold great promises as nanocarrier for antitumor drug oral delivery by improving paracellular and transcellular permeation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.