Abstract

Pyrochlore ruthenate oxides are promising electrocatalytic materials for lower temperature solid oxide fuel cell (LT-SOFC) cathodes due to their high catalytic activity toward oxygen reduction reaction (ORR) which is the major rate-limiting step at reduced temperatures (below 750 °C). Here we report for the first time highly pure pyrochlore bismuth ruthenate (Bi2Ru2O7, BRO7) synthesized via a practical and cost-effective glycine–nitrate (GNC) combustion method. The synthesis parameters including glycine to nitrate ratio and calcination conditions were systematically optimized, resulting in nanoparticles with crystallite size of ∼30 nm and significant reduction in synthesis steps. Incorporating the synthesized BRO7 nanoparticles with highly conductive bismuth oxide as an SOFC cathode results in significant enhancement of ORR, showing 9 times lower SOFC cathode area specific resistance, compared to that of BRO7 via conventional solid-state reaction. Thus, this result demonstrates the feasibility of BRO7 nanoparticles via GNC to enhance the ORR for lower temperature SOFC applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.