Abstract

The increasing prevalence of implant-associated infections (IAI) in orthopedics remains a public health challenge. Calcium phosphates (CaPs) are critical biomaterials in dental treatments and bone regeneration. It is highly desirable to endow CaPs with antibacterial properties. To achieve this purpose, we developed a photocrosslinked methacrylated alginate co-calcium phosphate cement (PMA-co-PCPC) with antibacterial properties, using α-tricalcium phosphate (α-TCP) powders with 16% amorphous contents as solid phase, liquid phases containing CuCl2 and SrCl2 as an inhibitor, and CaCl2 as an activator to construct PCPC. When CaCl2 started to activate the hydration reaction, Sr2+ or Cu2+ ions were exchanged with Ca2+, and α-TCP dissolution was restarted and gradually hydrated to form calcium-deficient hydroxyapatite (CDHA). PMA was added to crosslink with Cu/Sr ions and form gel-layer-wrapped hydrated CDHA. This study explored the binding mechanism of PMA and PCPC and the ion release rule of Ca2+ → Sr2+/Cu2+, optimized the construction of several antibacterial PMA-co-PCPC materials, and analyzed the physical, chemical, and biological properties. Because of the combined effect of Cu and Sr ions, the scaffold exhibited a potential antibacterial activity, promoting bone formation and vascular regeneration. This work provides a basis for designing antibacterial calcium phosphate biomaterials with controllable treatment, which is an important characteristic for preventing IAI of biomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call