Abstract

Polyetheretherketone (PEEK) is considered to be a prime candidate with the potential to replace biomedical metallic materials as an orthopedic and dental implant on account of its elastic modulus similar to that of human cortical bone. Unfortunately, its biomedical application is impeded by the bioinert surface property and inferior osteogenic activity. In this work, phosphate groups were incorporated onto the PEEK surface through a single-step UV-initiated graft polymerization of vinylphosphonic acid. Diffuse reflectance Fourier transform infrared spectroscopy (DRFTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) revealed that phosphate groups were successfully introduced onto the PEEK surface without apparently altering its surface topographical feature and roughness. Water contact angle measurements diclosed the increasing hydrophilia after surface phosphonation. In vitro cell adhesion, spreading, proliferation, alkaline phosphatase activity, extracellular matrix mineralization, and real-time PCR analyses showed enhanced adhesion, spreading, proliferation and osteogenic differentiation of MC3T3-E1 osteoblast on the surface-phosphorylated PEEK. An in vivo biological evaluation in the rabbit tibiae proximal defect model by means of a histological analysis confirmed that the surface-phosphorylated PEEK had improved bone-implant contact. The obtained results indicate that enhanced osteogenic activity to surface-phosphorylated PEEK, which gives positive information of its potential applications in orthopedic and dental implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call