Abstract

With the aim of controlling the orientation of liquid crystals (LCs) toward realizing external stimuli-responsive materials with tunable functionalities, we synthesized a composite of LCs and metal-organic frameworks (MOFs) by filling LCs into the pores of MOFs (LC@MOFs) for the first time. The included LCs interact with the MOFs through coordination bonds between the cyano groups of the LCs and the metal ions of the MOFs, enabling the orientation of the LC molecules inside the pores of the MOFs and the realization of birefringence of LC@MOFs. The three-dimensional nanometer interstice frameworks maintained the LC orientation even at temperatures much higher than the isotropic phase transition temperature of bulk LCs. Furthermore, the orientational state changed upon heating or cooling, inducing temperature-dependent birefringence. This study provides a new approach to the development of stimuli-responsive optical materials and stimuli-responsive MOFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.