Abstract

Carbon source and dissolved oxygen are the critical factors which sustain the stable redox environment for the microbes to implement the removal of nitrogen and organics in vertical flow constructed wetlands (VFCWs). The effect mechanisms of the COD/N ratios in intermittently aerated VFCWs are needed to be investigated in order to increase the synchronous removal efficiency of pollutants. In this study, the combined effects of COD/N ratios (3, 6, 12) and intermittent aeration in VFCWs on pollutant removal, microbial communities and related function genes were studied. The results showed the increase of COD/N ratios from 3 to 12 enhanced the removal efficiency of TN, NO3--N and COD. The removals of NH4+-N decreased as the COD/N ratio increased. The optimal removals of TN (87.65%), NH4+-N (93.20%), NO3--N (80.80%) and COD (73.93%) were obtained in VFCW2 (COD/N ratios was 6). Illumina Miseq High-throughput sequencing analysis showed that high COD/N ratios increased the richness and diversity of microbial communities. The absolute abundance of nirK, nosZ, nirS, amoA, nxrA, and anammox bacterial 16S rRNA presented various changes under the different ratios of COD/N. The increase of COD/N ratios enhanced the copy numbers of nirS, nirK and nosZ, which participate in denitrification process. High COD/N ratios (6 and 12) were in favor of Actinobacteria, Firmicutes and Chloroflexi, which mainly play important roles in the process of denitrification. This paper implies that the combination of carbon source and aeration is necessary to sustain high microbial activities during pollutant removal in VFCWs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call