Abstract

Herein, we report a silicon nanowire (SiNW) array-carbon quantum dot (CQD) heterostructure photovoltaic device via direct coating of CQD on chemically-etched SiNW arrays aided by Ag. By using carbon quantum dots layer as a competent element for surface passivation and modification for SiNWs, the solar cells efficiency is improved. The 1.6 times absorption enhancement has been recorded for nitrogen doped CQD decorated pyramidal SiNW heterostructure in comparison to that of CQDs coated silicon nanowires on the planar surfaces. Inclusion of nitrogen doped CQDs into the pyramidal SiNW arrays gives enhanced absorption intensity which can act as a good absorber layer in solar cell. The heterostructure also displays a significant photoluminescence in the blue region as probed by using time-resolved photoluminescence (TRPL) technique which provide the insight into the recombination mechanism in the synthesized heterostructures and is discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.