Abstract

In this study, we demonstrate on-chip terahertz absorption spectroscopy using dielectric waveguide structures. The structures' evanescent fields interact with the sample material surrounding the waveguide, enabling the absorption signature of the material to be captured. The ability of fabricated terahertz dielectric waveguide structures, based on the newly developed silicon-BCB-quartz platform, to capture the fingerprint of α-lactose powder (as an example material) at 532 GHz is examined. Enhancement of the spectroscopy sensitivity through techniques such as tapering the waveguide, confining the field in a slot dielectric waveguide, and increasing the interaction length using a spiral-shaped waveguide are investigated experimentally. The proposed on-chip spectroscopy structures outperform conventional and state-of-the-art approaches in terms of sensitivity and compactness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call