Abstract

Environmental contamination by petroleum hydrocarbons was exacerbated by oil pipeline breaks, marine oil spills and discharges from industrial production. To further improve the removal performance of petroleum hydrocarbons in solid particles, the deoiling experiments of swirl elution with micro-macrobubbles on oily sands were carried out in this paper. Experiment results indicated that when particles fell from the center of the bubble, the collision efficiency was 99.3%. The instantaneous contact angle (ICA) between the macrobubbles and the oil layer was improved in the presence of microbubbles. Furthermore, the maximum ICA of bubbles attaching to the oil layer was found to occur at pH 9 in the system of oily sand mixtures ranging from pH 5 to pH 14. This finding indicated that the slightly alkaline solution was more advantageous for bubbles to attach to the oil layer than the highly alkaline solution. The optimum condition for the elution of oily sand in the mixture of pH 7–14 was pH 12, and the oil removal efficiency was 85.4% for 10 min. The oil removal efficiency of swirl elution (SE) with bubbles on oily sand at pH 12 for 10 min was superior to either SE without bubbles or air flotation (AF). The results show that the swirl elution with bubbles can effectively enhance the oil removal efficiency of oily sands and provide guidance for controlling the environmental petroleum hydrocarbon contamination and reducing the usage of surfactants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call