Abstract
The creation of highly conductive ultrashallow-doped regions in strained Si is a key requirement for future Si based devices. It is shown that in the presence of tensile strain, Sb becomes a contender to replace As in strain-engineered CMOS devices due to advantages in sheet resistance. While strain reduces resistance for both As and Sb; a result of enhanced electron mobility, the reduction is significantly larger for Sb due to an increase in donor activation. Differential Hall measurements suggest this is a consequence of a strain-induced Sb solubility enhancement following solid-phase epitaxial regrowth, increasing Sb solubility in Si to levels approaching 10 21 cm − 3 . Experiments highlight the importance of maintaining substrate strain during thermal annealing to maintain this high Sb activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.