Abstract

An integrated process of metal chelate absorption coupled with two stage bio-reduction using immobilized cultures has been proposed to continuously removal of NOx, and the effects of SO2, NO and O2 concentration, gas/liquid flow rate on NOx removal efficiency were investigated. Although nitrogen-containing components, such as Fe(II)EDTA-NO, NO2− and NO3− in the scrubbing solution, inhibited the bio-reduction of Fe(III)EDTA obviously, it was feasible to abate the inhibition effect by using the two stage bio-reduction system, and thus to improve NOx removal efficiency. The removal efficiency decreased slowly with the increase of SO2, O2, NO concentration and gas flow rate, and increased with the increase of liquid flow rate. Continuously operating for 18 days, a high removal efficiency around 95% was reached by using the two-stage bio-reduction system with immobilized microorganisms, while the value decreased to 85% after 5 days of operation by using the suspended microorganisms, at a constant gas flow rate of 60L/h containing 424–450mg/m3 NO, 2428–2532mg/m3 SO2 and 3% O2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call