Abstract

Black-odorous water was caused by urbanization, industrial sewage and domestic sewage. Black-odorous water with low carbon nitrogen ratio (C/N) may inhibit the activity of microorganisms due to the lack of C source during microbial treatment. In this study, iron-carbon micro-electrolysis (ICME) was used to couple nitrifying and denitrifying bacteria. The external factors affecting microbial activity were optimized through experiments, and the effect of low C/N wastewater was studied. The optimal external factors were temperature of 30 ℃, C/N of 3, DO of 3 mg/L and iron-carbon dosage of 150 g/L. Coupled with ICME, it was found that the removal rate of nitrate nitrogen in water increased by 50.74 %, indicating that ICME could make up for the deficiency of microbial C source and improve the removal rate of nitrate nitrogen in low C/N black-odorous water. The improvement of removal rate had much to do with ICME's role as electron donor to provide electrons for denitrification. In addition, the performance of wastewater treatment by this process is tested. The maximum load of ammonia nitrogen, COD, nitrate and total nitrogen was increased to 0.1928, 1.7732, 0.2691 and 0.5181 kg/(m3·d), respectively. High-throughput sequencing results showed that the species of dominant plant population changed after ICME coupling, but the abundance increased significantly, which further indicated that ICME played a synergic role in microbial nitrogen removal, which was related to the release of trace iron by ICME. This study can provide some guidance for the treatment of black-odorous water with high ammonia nitrogen and low C/N.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call