Abstract

Efficient carbon use is crucial for biological nitrogen removal. Traditional aerobic processes can waste carbon sources, exacerbating carbon deficiency. This study explores an anaerobic/oxic/anoxic system with sludge double recirculation to improve nitrogen removal in low C/N wastewater. This system integrated aerobic nitrification after the carbon intracellular storage, separating carbon and nitrogen by denitrifying glycogen-accumulating organisms (DGAOs) with endogenous partial denitrification and Anammox within the anoxic units. A significant efficiency of 91.02±7.01% chemical oxygen demand (COD) was converted into intracellular carbon in anaerobic units, significantly reducing carbon futile oxidation in the aerobic units by effectively separating COD from ammonia. Intracellular storage of carbon sources and microbial adaptation to carbon scarcity prevent futile oxidation of COD in the aerobic units even with short-term high dissolved oxygen (DO), thereby enhancing nitrogen removal under anoxic conditions with sufficient intracellular carbon source. The microbial analysis identified Candidatus Brocadia as the dominant anammox bacteria, in combination with the activity of DGAOs and other related microbial communities, accounting for 37.0% of the TN removal. Consequently, the system demonstrated remarkable nitrogen removal efficiencies, achieving 81.3±3.3% for total nitrogen (TN) and 98.5±0.9% for ammonia nitrogen while maintaining an effluent COD concentration of 17.2±9.1 mg/L, treating the low C/N of 4.18 in the influent wastewater. The findings in this study provide a sustainable and energy-saving technique for conventional WWTPs to meet strict discharge standards by avoiding futile oxidation of COD and encouraging anammox contributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.